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ABSTRACT. Free radicals in tobacco smoke are thought to be an important cause of smoking-

induced diseases, yet the variation in free radical exposure to smokers from different brands of 

commercially available cigarettes is unknown.  We measured the levels of highly reactive gas-

phase and stable particulate-phase radicals in mainstream cigarette smoke by electron 

paramagnetic resonance (EPR) spectroscopy with and without the spin-trapping agent phenyl-N-

tert-butylnitrone (PBN), respectively, in 27 popular US cigarettes and the 3R4F research 

cigarette, machine-smoked according to the FTC protocol.  We find a 12-fold variation in the 

levels of gas-phase radicals (1.2 to 14 nmol per cigarette) and a 2-fold variation in the amounts 

of particulate-phase radicals (44 to 96 pmol per cigarette) across the range of cigarette brands. 

Gas and particulate-phase radicals were highly correlated across brands (ρ=0.62, p<0.001). Both 

radicals were correlated with TPM (gas-phase: ρ=0.38, p=0.04; particulate-phase: ρ=0.44, 

p=0.02) and ventilation (gas- and tar-phase: ρ= -0.58, p=0.001), with ventilation explaining 

nearly 30% of the variation in radical levels across brands.  Overall, our findings of significant 

brand variation in free radical delivery under standardized machine-smoked conditions suggest 

that the use of certain brands of cigarettes may be associated with greater levels of oxidative 

stress in smokers.   
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INTRODUCTION 

Cigarette smoke is a harmful mixture of more than 7000 chemicals generated by a 

combination of combustion, pyrolysis and distillation with temperature reaching up to 950°C 

under both oxygen-rich as well as oxygen-depleted conditions.
1, 2

 It has been known for almost 

seven decades that free radicals are generated in high concentrations as a result of complex 

reactions in mainstream smoke.
3-7

 Due to the presence of an unpaired electron, radicals are 

unstable, highly reactive and redox active. The inhaled free radicals, in turn, can cause 

significant oxidative damage to major biological macromolecules (DNA, lipids, protein and 

carbohydrates) and trigger the dysregulation of redox signaling pathways impacting numerous 

critical cellular functions.
8-10

 The resulting oxidative damage and stress has been implicated in 

the initiation and propagation of many chronic and degenerative diseases in smokers including 

cancer,
11-13

 cardiovascular diseases,
12, 14-16

 neurodegeneration,
17

 and lung diseases.
12, 18, 19

 

Elegant work by Pryor and colleagues in the 1980s characterized cigarette smoke radicals 

into two types with distinct redox and chemical properties that partition into gas and particulate 

phases.
5, 6, 20, 21

 The gas-phase of the cigarette smoke contains oxygen- and carbon-centered 

radicals that are very short-lived and highly reactive. These radicals can penetrate the upper 

respiratory tract and propagate their damaging effects despite their relatively short half-lives and 

limited diffusion times.
8
  In contrast to the gas-phase radicals, the particulate-phase contains 

radical species such as semiquinone, which are relatively longer-lived and can persist in some 

cases up to several months. Exposure to these “Environmentally Persistent Free Radicals” 

(EPFRs) can occur directly in the smoker or indirectly in the passively exposed individual and 

can penetrate deep within the respiratory tract.  
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Research on the exposure and biological impact of free radicals, especially gas-phase 

radicals, has been hampered by their extremely short half-lives (milliseconds) and high reactivity 

making measurements difficult. Consequently, little is known regarding the levels and variation 

of free radical exposure in smokers and the impact that differences in exposure may have on 

health status. Our main goal was to systematically quantify free radicals produced from 

commercial cigarettes available in the US market as a means of estimating the range of tobacco-

derived free radical exposure in smokers.  

Numerous techniques have been used to measure free radicals in tobacco smoke yielding 

widely different results, and few attempts have been made to standardize these methodologies.
22-

29
  Thus, as part of this research, we developed a standardized protocol for the reproducible and 

quantitative determination of free radicals in mainstream smoke using electron paramagnetic 

resonance (EPR) spectroscopy. EPR is a sensitive and selective technique for directly detecting 

and quantitating free radicals in complex mixtures such as cigarette smoke.
30

 In the current 

investigation, mainstream smoke from cigarettes was generated under the Federal Trade 

Commission (FTC) regimen, and both highly reactive gas-phase radicals and stable particulate-

phase radicals were measured by EPR.   

This is the first study to assess and rank free radical yields across commercially available 

cigarettes. Using these data, direct exposure of smokers to harmful free radicals can be assessed. 

These data can have important public health and regulatory implications given the importance of 

free radical exposure in the development of cigarette-induced diseases. 
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MATERIALS AND METHODS 

 

Materials: The 3R4F research cigarette was obtained from the University of Kentucky 

(Lexington, Kentucky, USA).  All the commercial cigarettes were purchased locally (Hershey, 

PA): 26 King size (85 mm) and Virginia Slims Gold (100 mm). The cigarette brand varieties 

were selected based on their market share or unique characteristics. Marlboro, Newport, Pall 

Mall and Camel were selected for their popularity, with variants of these brands comprising an 

estimated total US market share of 66%.
31

 Parliament and American Spirit exemplify the types 

of unique characteristics such as recessed filters and “additive free” formulation, respectively. 

The cigarettes were stored in their original packaging long term at -20°C in airtight plastic bags. 

Analytical grade chemicals: nitrone spin trap phenyl-N-tert-butylnitrone (PBN), tert-

butylbenzene, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), 4-hydroxy-2,2,6,6-

tetramethylpiperidine 1-oxyl (TEMPOL), heptadecane from Sigma-Aldrich (St. Louis, MO, 

USA), Suprasil® EPR tubes (4mm o.d;Wilmad-Labglass,Vineland, NJ, USA), Schlenk line 

(Chemglass Life Sciences,Vineland, NJ, USA) and Cambridge filters pads (Performance 

Systematix Inc.,Grand Rapids, MI, USA) were used as supplied.  

 

Mainstream Smoke Generation: The cigarettes were conditioned for testing by removing them 

from cold storage and placing them in a constant humidity chamber (60% relative humidity, 

22°C), for at least 48 hours before smoking. Mainstream smoke was generated by using a 30-port 

smoking machine (Jaeger-Baumgartner, CSM JB2080). Cigarettes were smoked on the machine 

under the FTC smoking parameters: 35 mL puff volume, 2 second puff duration, and 60 second 

puff interval. For each replicate, five cigarettes were simultaneously smoked to provide for a 
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 6

strong EPR signal required for quantitative analysis. Mainstream smoke was separated into 

particulate-phase and gas-phase by passing through a Cambridge filters pad (CFP).  

 

Analysis of Particulate-phase Radicals: A CFP, located down-stream of the smoke machine 

pump, was used to trap the particulate-phase radicals and was subsequently stored at -80°C in an 

airtight plastic bag until further analysis. EPR spectra were obtained by direct insertion of the 

CFP into the cavity of a Bruker eScan R spectrometer (Bruker-Biospin, Billerica, MA, USA) 

operating in X-band. The EPR parameters were as follows: microwave frequency, 9.7 GHz; 

modulation frequency, 86.0 kHz; microwave power, 6.00 mW; scan range, 50 G; modulation 

amplitude, 1.10 G; sweep time, 5.243 s; time constant, 10.240 ms; and conversion time, 10.240 

ms.  All measurements were carried out at room temperature (22 ± 1°C). Spin concentrations 

were determined by integration of the area under the curve of the EPR signal using WinEPR 

software (version 0.98, National Institute of Environmental Health Sciences, National Institutes 

of Health, USA). Standardized concentrations of TEMPOL in methanol or a blank methanol 

solution pipetted onto CFP were used to quantify the spin concentrations of cigarette particulate-

phase radicals.  

 

Analysis of Gas-phase Radicals: The gas-phase of mainstream smoke was passed through an 

impinger located down-stream of the pump and the CFP. Trapping of gas-phase radicals was 

accomplished using 4 mL ice-cold tert-butylbenzene and 0.05 M PBN. After smoking, aliquots 

of the PBN solution were immediately frozen in liquid nitrogen and stored at -80°C until further 

analysis. Upon analysis, PBN solutions were thawed at room temperature, and 400 µl aliquots 

were placed into EPR tubes and deoxygenated using three freeze-pump-thaw cycles with a 
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Schlenk line, as previously described.
25

 Briefly, samples were frozen using liquid nitrogen, a 

vacuum was subsequently applied allowing trapped air to escape and gaseous argon was then 

introduced to provide an inert atmosphere before the sample was re-frozen. Samples were 

subjected to a total of three freeze-vacuum pump-thaw-argon cycles (2 minute each). The EPR 

spectra derived from PBN-radical adducts were measured using the following EPR parameters: 

microwave frequency, 9.7 GHz; modulation frequency, 86.0 kHz; microwave power, 6.00 mW; 

scan range, 60 G; modulation amplitude, 1.10 G; sweep time, 41.94 s; time constant, 81.92 ms; 

and conversion time, 81.92 ms.  All measurements were carried out at room temperature (21.5 ± 

0.5°C). Spin concentrations were determined by peak to peak height of the EPR signal using 

WinEPR software and comparison with standardized solutions of TEMPO in tert-butylbenzene. 

The standard TEMPO solution was not subjected to freeze-pump-thaw cycles, a common 

practice in the field.  

 

Determination of Total Particulate Matter and filter ventilation of the Cigarettes: Total 

particulate matter (TPM) was determined by weighing the CFPs.
32

 Five replicates of total filter 

ventilation (%) of the cigarette were measured at the Centers For Disease Control and Prevention 

(CDC), Atlanta, USA as described in a previous study.
33

  

 

Statistical Analysis: We sub-grouped the cigarette brands (Table 1) on the basis of two common 

cigarette design features; 1) flavor (regular vs. menthol) and 2) filter ventilation. In some 

analyses, cigarette brands were categorized according to filter ventilation tertiles (low, mid, and 

high). All analyses were performed using R statistical package 3.3.
34

 Summary statistics and 

boxplots are presented for major variables. The association between different variables is 
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 8

estimated and tested using robust Spearman correlations. Linear regression was used to 

determine the significance of the ventilation and flavor group effects. Tukey contrasts were used 

to evaluate all pairwise comparisons of means within the ventilation categories. 

 

RESULTS 

Standardized EPR Assessment of Tobacco Smoke Free Radicals 

Standardized protocols for measurements of free radicals were developed using 3R4F 

research cigarettes. EPR analysis of smoke radicals requires the separation of whole smoke into 

its constituent gas and particulate-phases by use of Cambridge filters. Due to the lack of stability 

and short half-live of the gas-phase radicals in mainstream smoke, spin trapping was required 

prior to EPR analysis of the resulting radical adducts.  For this purpose, PBN was used as the 

spin trap based on its ability to form adducts with a broad range of different radicals.
30

  Since the 

time between sample collection and EPR measurement was a critical factor, all analyses were 

performed within 15 minutes.  The organic solvent for radical collection can influence trapping 

efficiency and stability.  While benzene is commonly used, we selected to use tert-butylbenzene 

because it provided identical results as benzene but is far less toxic than benzene and is less 

subject to vaporization than other organic solvents.  Since oxygen can interfere with the EPR 

signal, optimal results were obtained when deoxygenation was performed prior to EPR 

measurement.   

For quantitative EPR, the use of a reference standard is required.  Previous papers have 

used numerous reference radical standards interchangeably including diphenyl-β-pictryl hydrazil, 

(DPPH), TEMPO, and TEMPOL for tobacco smoke radical quantitation, very often providing 
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 9

few details about conditions such as the solvent used.
5, 22, 35

 In our studies, TEMPO in tert-

butylbenzene was selected for use with gas-phase trapped radicals based on its higher degree of 

sensitivity upon EPR analysis.  In contrast, particulate-phase radicals are not trapped, but rather 

collected and analyzed directly on the CFP.  Since CFP emit a small background EPR signal 

(Figure 1B), measurement blanks were constructed by addition of solvent directly on to filter 

pads followed by evaporation.  For these latter analyses, TEMPOL was selected as the reference 

standard based on its greater stability and higher sensitivity on CFP.  

Utilizing optimized conditions for the collection and analysis of mainstream smoke 

radicals, representative EPR spectra for both gas-phase PBN radical adducts and particulate-

phase stable radicals for the 3R4F reference cigarette are provided in Figure 1.  The 

concentration of both gas-phase radicals and particulate-phase radicals was linearly dependent on 

the number of cigarettes smoked (R
2
= 0.998 and 0.996 for gas-phase and particulate-phase 

radicals, respectively). Results demonstrate that mainstream smoke generated from 3R4F 

cigarettes contained on average 8 ± 2 nmol (5 x 10
15

 spins, n=6) of gas-phase radicals and 64 ± 

13 pmol (4 x 10
13

 spins, n=3) of particulate-phase radicals per cigarette, both in the ranges 

reported previously.
5, 22

  Overall, these methods provided highly reproducible results for both 

gas-phase radicals (3.6% precision) and particulate-phase radicals (1.7% precision).  

Gas and Particulate phase Radicals in Mainstream Smoke from Popular US Cigarette Brands 

Our standardized method for quantitation of tobacco smoke radicals was then used in 

assessing and ranking free radical yields from 27 popular commercial cigarette brands with 

diverse characteristics currently in the US market. As shown in Table 1, the gas-phase radical 

yields under the FTC smoking regimen varied widely (12-fold) among the cigarettes, ranging 
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from 1.2 to 14 nmol per cigarette. Meanwhile, the particulate-phase radical yields varied 2-fold 

among the cigarettes brands under the FTC smoking regimen ranging from 44 to 96 pmol per 

cigarette (Table 1).   

We examined whether free radical levels in the gas-phase were associated with those in 

the particulate-phase (Table 2).  While levels of variation between products were substantially 

lower in the particulate-phase, overall, these levels were highly correlated to gas-phase radicals 

(Spearman coefficient (ρ)=0.62, p=0.0006). Correlational analyses were also performed to 

examine potential associations between free radicals and both TPM and filter ventilation (Table 

2). Significant negative correlations were observed between filter ventilation and both gas-phase 

(ρ=-0.58, p=0.001) and particulate-phase radicals (ρ=-0.58, p=0.001). Significant associations 

were also observed between TPM and both gas-phase (ρ=0.38, p=0.04) and particulate-phase 

radicals (ρ=0.44, p=0.02).   

To examine some potential factors that can affect radical production, the impact of 

common cigarette design features (flavor and filter ventilation) on gas and particulate phase 

radicals was examined.  Analysis of gas-phase radicals based on filter ventilation tertiles 

indicated that highly ventilated cigarettes tended to produce significantly fewer gas-phase 

radicals compared to the low and medium ventilated cigarettes (Figure 2A, p<0.05). Meanwhile, 

particulate-phase radical production was significantly lower for highly ventilated cigarettes 

compared to those with low ventilation (Figure 2C, p<0.05).  Overall, approximately 30% of the 

variation in both gas-phase (r
2
=0.34, p=0.001) and particulate-phase (r

2
=0.31, p=0.001) radicals 

was explained by differences in ventilation. Both gas-phase (Figure 2B, p=0.24) and particulate-

phase radicals (Figure 2D, p=0.09) were not significantly different between regular and menthol 

brands.  
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DISCUSSION 

While mainstream tobacco smoke contains over 7,000 chemicals, much of the damage is 

thought to result from the 93 carcinogens and respiratory, cardiovascular and other toxicants on 

the FDA’s list of hazardous and potentially hazardous chemicals (HPHC’s).  However risk 

assessment models based on these smoke constituents underestimate the actual incidences of 

many smoking induced diseases.
36-39

 Some of the limitations of the models are due to the 

complexity and incomplete characterization of smoke constituents and lack of human exposure 

data. Free radicals are not included in the FDA’s HPHC list or in most risk models but may 

account, in part, for the gap between assessment models and disease incidences. Damage 

resulting from free radical exposure has long been known to have major negative health 

consequences, and, as clearly delineated in the 2010 Surgeon General’s Report, oxidative 

stress/damage resulting from tobacco free radical exposure was identified as one of the major 

causes of tobacco induced diseases.
40

 While direct experimental data linking exposure to free 

radicals with specific health outcomes are limited due to the difficulties in their measurement, 

direct evidence for free radical induced harm has been observed for some relevant outcomes.  

Diminished elastase activity due to the oxidation of alpha-1-proteinase inhibitor was observed 

after exposure to both gas and particulate-phase radicals, an effect likely linked to the onset of 

emphysema.
41

 Free radicals have also been shown to cause single-strand breaks in DNA.
13, 42, 43

 

Cigarette tar fractions that had a strong EPR signal  also reduced oxygen to hydrogen peroxide 

and nicked DNA.
43

 Inhaled free radicals from cigarette smoke can set off a cycle of secondary 

radical production resulting from reaction with other chemicals in smoke, including polycyclic 

aromatic hydrocarbons (PAHs), transition metals, heavy metals and aldehydes,
44-46

 and by 

evoking inflammatory responses, which include the generation of endogenous reactive 
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oxygen/nitrogen species.
18

 Overall, the chronic exposure of a smoker to such high levels of 

oxidative stress/damage is commonly accepted as an important factor in the etiology of 

numerous diseases in the smokers
47

, such as cancer, atherosclerosis, COPD and emphysema.  

Here we report for the first time that the levels of free radicals in mainstream smoke can 

vary substantially by cigarette brand.  As observed previously,
5, 22

 in our study both highly 

reactive gas-phase radicals and more stable particulate-phase radicals were abundant in smoke 

from all brands tested with single cigarettes producing as much as 16 nmol (8 x 10
15

 spins) of 

highly reactive radicals and 114 pmol (5 x 10
13

 spins) of more stable radicals.  However, when 

different brands were tested, a wide variation in radical production was observed: 12-fold for 

gas-phase radicals and 2-fold for particulate-phase radicals.  The brands tested represent a 

sampling of 27 of the most commonly used or unique products out of the 260 different brand 

families identified on the market between 2002 and 2011.
48

 We believe that the differences in 

free radical production by brand may be a critical factor resulting in differences in exposure and 

potentially risk for tobacco-related diseases, particularly when one considers the impact of these 

differences when expressed over the lifetime of a smoker (e.g., 20 cigarettes per day for 40 

years).  The importance of examining both types of radicals is due to differences in their likely 

mechanisms of action since gas-phase radicals are highly reactive and can cause extensive 

oxidative damage and acute responses in the lung and upper digestive tract and whereas 

particulate-phase radicals are more stable and can penetrate deeper in the body and lead to more 

systemic consequences. However, to date, there are no studies that distinguish and rank the 

damage induced by the two types of smoke radicals. Further studies that examine the 

toxicological implications of both types of radials are desperately needed prior to development of 

regulations.  
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In the present study, we focused primarily on the measurement of total radicals without 

specifically identifying individual radical species and developed the methodology accordingly.  

To this end, of the many available spin traps, PBN was selected for use based upon its reactivity 

with a wide range of radical types, high level of stability of resulting radical adducts, and high 

trapping efficiency.  Indeed, PBN trapping is a standard technique for measurement of tobacco 

smoke radicals that has been accepted and used for decades.
5, 22

  It is possible that there are 

radicals in tobacco smoke that we were unable to detect based upon limited reactivity with PBN 

or extreme short life span, but we expect these to be minimal.  In the current studies, the specific 

identities of the individual radicals could not be determined due to the resolution of the hyperfine 

coupling constants obtained with or without PBN.  Speciation of radicals is also complicated by 

their short half-life and high reactivity leading to a high degree of variation based upon reactions 

occurring in the smoking machine tubing and on the CFP.
49, 50

 It is possible that in addition to 

differences in total radicals produced, the specific radical species may differ by cigarette brand 

as may the toxicologic impact of each species.  Previous investigations have suggested that 

cigarette smoke likely contains more than 35 different species
49

 with 18 carbon-centered radical 

species having been identified by HPLC-MS/MS in mainstream whole smoke.
28, 29, 50

  The 

unique chemistry of individual radicals requires further evaluation to help clarify the impact they 

may have on a smoker.  

Filter ventilation is a significant variable differentiating the different cigarettes and 

allows mixing of the air with smoke, thus reducing the temperature of combustion and also 

diluting the smoke.
51, 52

 The degree of ventilation in the cigarette filter design has been 

responsible for confusion regarding the potential risk of different brands and sub-brands among 

the consumer due to the common practice of blocking the ventilation holes in the cigarette filters. 
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When we tested these products on the FTC smoking regimen (without blocking filter 

ventilation), we found that highly ventilated cigarettes produce lower numbers of free radicals 

likely due to the dilution of the tobacco smoke.  However, based on the common practice of 

blocking the ventilation holes, smokers of these highly ventilated products will not necessarily be 

exposed to reduced levels of radicals.   

Menthol is the only marketed characterizing flavor in cigarettes to enhance taste and has 

been shown to alter smoking behavior.
53

 Menthol cigarettes account for approximately 25 

percent of all cigarette sales in the U.S.
54

 Particular interest in menthol as a potential additional 

risk factor for tobacco related illnesses has been debated over the past decade.
55-59

  In order to 

determine if free radical formation may be related to menthol concentrations, we compared 

levels of radical production in menthol versus regular cigarettes.  Overall, no significant 

difference in amounts of either gas or particulate-phase radicals was observed, suggesting that 

menthol does not impact radical generation during the combustion process.   

Interestingly, we find that variation in filter ventilation across the brands explains about 

30% of the brand to brand variation in free radical levels.  Overall, the nature of the observed 

variation in radical generation after adjusting for ventilation is not known but may depend on 

other cigarette characteristics, such as rod length and circumference, filter length and type, 

tobacco weight and blend, and addition of tobacco additives. Combustion of different tobacco 

blends, such as burley, oriental and bright, show variations in the free radical production with 

yields of gas-phase radicals highest in burley > oriental > bright and particulate-phase radicals 

highest in oriental > burley > bright.
7, 29

 The pyrolysis temperature also has been shown to affect 

radical yields.
60

 The particulate-phase radical yield is temperature dependent, increasing from 0.8 

× 10
15

 spins/gram tobacco at 240°C to 3.5–4.0 × 10
15

 spins/gram tobacco at 450-510°C, and is 
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inversely dependent on the oxygen concentration.
7
 Meanwhile, oxidation of the tobacco is 

required for formation of gas-phase radicals. In our study, the fact that gas-phase radical yields 

are highly correlated to particulate-phase yields suggest that they are produced from similar 

tobacco constituents and thermal decomposition processes. Further, we find that both phases of 

radicals were correlated with total particulate matter (TPM).  Since the majority of TPM 

constituents result from the incomplete combustion of the tobacco leaf, this further supports a 

shared mechanism for formation among free radical species.   

In the current study, we machine smoked cigarettes using the FTC smoking regimen for 

comparison purposes.  However, differences in human smoking behaviors, such as intensity of 

smoking, number of puffs per cigarette, and depth of inhalation, are well-known to impact 

delivery of tobacco smoke and its constituents, such as tar, nicotine and PAHs.
61, 62

  Thus, it is 

possible that these factors could similarly impact free radicals leading to greater levels of 

exposure to free radicals when more intense puffing protocols are used.  As such, our findings 

likely underestimate the overall exposure to smokers and studies are underway to assess these 

possible differences.  

Free radicals have not been included in FDA’s toxicant list perhaps due to the analytical 

challenges in identifying and quantifying them.  Previously, several laboratories have made 

efforts to measure free radicals; however, most of the studies lack quantitation and have not  

used standardized smoking protocols, experimental conditions, cigarettes brands, and analytical 

techniques, probes, or spin traps. Studies that used fluorescent probes to assess free radicals in 

cigarette smoke lack specificity and can introduce artifacts.
63-65

 Several groups have used more 

promising nitroxide-based probes to quantitate and identify tobacco radicals; however, nitroxide-

based probes only trap carbon–centered radicals.
23, 28, 29, 66

 Although it has its own technical 
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limitations,  EPR is still the only method that allows for the direct  measurement of free radicals. 

Baum et al. reported on some of the variables that may impact radical quantitation including 

solvent, spin trap, collection and analysis volume, and EPR tube positioning and thickness.
22

 We 

have expanded on their work and developed a robust technique for the measurement of gas-phase 

as well as particulate-phase radicals in mainstream cigarette smoke with high reproducibility. We 

found that careful deoxygenation is a critical step to obtain consistent and accurate measurement 

of gas-phase  radicals since any residual oxygen significantly impacts the yields. Results were 

expressed in nmol (relative to the reference standards used) rather than the number of spins to 

allow for a more direct comparison with other smoke toxicants as other  authors have also 

suggested.
50, 67, 68

  

It is of interest to compare levels of free radicals in tobacco smoke with other major toxic 

tobacco smoke constituents currently on the FDA HPHC list including numerous carcinogens.  

Per cigarette, the observed levels of gas-phase radicals (6.2 nmol) were similar to those repored 

for other constituents including nitromethane (9.8 nmol), nickel (8.5 nmol), cobalt (1.7 nmol), 2-

toluidine (1.3 nmol),  hydrazine (1.8 nmol),  hetrocyclic A-α-C aromatic amine (1.4 nmol), N′-

nitrosonornicotine (NNN, 1.5 nmol), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 1.1 

nmol), N-nitrosodiethanolamine (2 nmol), and N-nitrosopiperidine (2.2 nmol).
68

 Likewise, 

observed particulate phase radicals per cigarette (65 pmol) were similar to several tar based 

constituents including benz[a]anthracene (117 pmol), benzo[j]fluoranthene (13 pmol), 

benzo[a]pyrene (60 pmol), chrsyene (108 pmol), dibenz[a,j]acridine (3.6 pmol), and 

dibenzo[c,g]carbazole (2.6 pmol). 

The Family Smoking Prevention and Tobacco Control Act gives FDA the authority to 

regulate cigarettes to reduce the impact on public health.  FDA’s Center for Tobacco Products 
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can consider regulatory proposals to disclose and set limits on total free radical yields from 

cigarettes.  Much research is warranted to identify all the cigarette radical species and understand 

the biological implications of individual radicals. We believe our work is a step forward to 

bringing cigarette free radical emissions under regulatory framework. 
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Table 1: Cigarette brand identification information with UPC, listing of flavor, filter ventilation 

and their yields of gas-phase and particulate-phase radicals.  

 

Brands UPC Flavor
a
 

Filter 

Ventilation 

(%)
b
 

Gas-Phase 

Radicals
c
 

(nmol/cigarette) 

Particulate-Phase 

Radicals
d
 

(pmol/cigarette) 

3R4F N/A R 38 7.72 ± 2.22 63.87 ± 13.66 

American Spirit 

Mellow Menthol 

047995855055 
M 

39.2 
2.06 ± 0.53 63.10 ± 9.47 

American Spirit 

Menthol 

047995855222 
M 

13.4 
2.23 ± 0.63 64.22 ± 2.67 

American Spirit 

Orange 

047995855239 
R 

56.3 
1.17 ± 0.28 44.08 ± 6.22 

American Spirit 

Turquoise 

047995855246 
R 

28.9 
1.21 ± 0.15 52.72 ± 2.88 

Camel Blue 01230739 R 32.3 6.49 ± 2.20 54.17 ± 11.38 

Camel Filters 01230331 R 29.5 5.86 ± 0.84 60.33 ± 1.92 

Camel Silver 012300200158 R 50.1 5.69 ± 1.78 64.04 ± 1.89 

Eagle20's Gold 

Menthol 

01117307 
M 

10.6 
8.33 ± 0.94 95.59 ± 16.76 

Kool 02725228 M 29.6 6.58 ± 0.90 60.72 ± 9.29 

L&M Blue 028200310026 R 16.4 8.99 ± 2.59 75.50 ± 9.61 

L&M Menthol 028200310323 M 21.8 7.90 ± 0.91 60.38 ± 8.35 

L&M Red 028200309822 R 19.4 5.26 ± 1.34 70.79 ± 12.14 

Marlboro Gold 02838423 R 26.4 6.31 ± 1.74 65.71 ± 13.99 

Marlboro 

Menthol 

02836124 
M 

18.9 
5.60 ± 0.61 67.03 ± 11.49 

Marlboro Red 02835727 R 15.4 5.32 ± 1.26 59.53 ± 11.81 

Marlboro Silver 02847722 R 45.9 3.70 ± 0.87 52.59 ± 7.92 

Newport 02657512 M 2.4 10.2 ± 0.39 65.70 ± 5.07 
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Newport Red 02665618 R 3.5 8.48 ± 1.88 66.81 ± 5.09 

Pall Mall 

Menthol 

02785929 
M 

43.3 
5.87 ± 1.25 60.00 ± 14.63 

Pall Mall Orange 02717520 R 57.9 3.90 ± 1.34 56.87 ± 5.88 

Pall Mall Red 02785123 R 36.2 5.17 ± 1.33 56.12 ± 21.44 

Parliament 

White 

02878421 
R 

31.8 
9.71 ± 1.60 74.17 ± 9.75 

Parliament 

White Menthol 

02878722 
M 

26.1 
7.32 ± 2.28 76.28 ± 3.21 

Pyramid Gold 

Menthol 

01149403 
M 

10 
13.9 ± 1.97 78.98 ± 9.75 

Pyramid Red 01149209 R 12.1 8.61 ± 1.85 74.11 ± 10.66 

Salem 01232038 M 18.5 7.44 ± 2.06 68.36 ± 9.17 

Virginia Slims 

Gold 
02873329 R 

41 
3.67 ± 0.78 73.06 ± 3.52 

 

Note: All cigarettes were from king-sizes hard packs (85mm), except 3R4F (soft pack) and Virginia Slims Gold 

(100s). 
a
 R = Regular; M = Menthol 

b
 Values are mean (n=5)

 

c
 Values are mean ± SD (n=3-7) 

d
 Values are mean ± SD (n=2-4) 
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 Table 2: Spearman's rank correlation of mainstream smoke free radicals for the 27 brands of 

cigarettes.  

 

 

 

 

Note: Values are Spearman’s Rank correlation coefficients (ρ) with corresponding p-values in parentheses. 

 Gas-phase radicals Tar-phase radicals 

Tar-phase radicals 
0.617 

(0.0006) 

 

Filter ventilation 
-0.586 

(0.001) 

-0.582 

(0.001) 

TPM 
0.380 

 (0.04) 

 0.438 

 (0.02) 
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Figure 1: Representative EPR spectra for (A) gas-phase PBN radical adducts and (B) 

particulate-phase radicals for the 3R4F reference cigarette and blank CFP are shown. The 

concentrations of both gas-phase radicals (C) and particulate-phase radicals (D) are linearly 

dependent on the number of cigarettes smoked. 

Figure 2: Box-plots of free radicals yields comparing brands by cigarette strength and flavor. 

Box-plots of gas-phase radicals (A) cigarette filter ventilation and (B) cigarette flavor (regular 

and menthol). Box-plots of particulate-phase (C) filter ventilation and (D) cigarette flavor 

(regular and menthol). *p ≤ 0.05 between groups. 
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Figure 1: Representative EPR spectra for (A) gas-phase PBN radical adducts and (B) particulate-phase 
radicals for the 3R4F reference cigarette and blank CFP are shown. The concentrations of both gas-phase 
radicals (C) and particulate-phase radicals (D) are linearly dependent on the number of cigarettes smoked.  
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Figure 2: Box-plots of free radicals yields comparing brands by cigarette strength and flavor. Box-plots of 
gas-phase radicals (A) cigarette filter ventilation and (B) cigarette flavor (regular and menthol). Box-plots of 

particulate-phase (C) filter ventilation and (D) cigarette flavor (regular and menthol). *p ≤ 0.05 between 

groups.  
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